

Dissertation on

“Image Recognition Based HTML Generator”

Submitted in partial fulfillment of the requirements for the award of degree of

Bachelor of Technology
in

Computer Science & Engineering

Submitted by:
Kunal Paliwal
Mayank S Rao
Prerna Rao V

01FB16ECS172
01FB16ECS199
01FB16ECS276

Under the guidance of

Internal Guide
Ms. Vidhu Rojit

Adjunct Professor,
PES University

January – May 2020

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING

PES UNIVERSITY
(Established under Karnataka Act No. 16 of 2013)

100ft Ring Road, Bengaluru – 560 085, Karnataka, India

Image Recognition based HTML Generator

PES UNIVERSITY

(Established under Karnataka Act No. 16 of 2013)
100ft Ring Road, Bengaluru – 560 085, Karnataka, India

FACULTY OF ENGINEERING

CERTIFICATE

This is to certify that the dissertation entitled

‘Image Recognition Based HTML Generator’

is a bonafide work carried out by
Kunal Paliwal
Mayank S Rao
Prerna Rao V

01FB16ECS172
01FB16ECS199
01FB16ECS276

In partial fulfilment for the completion of eighth semester project work in the Program of Study Bachelor of

Technology in Computer Science and Engineering under rules and regulations of PES University, Bengaluru

during the period Jan. 2020 – May. 2020. It is certified that all corrections / suggestions indicated for internal

assessment have been incorporated in the report. The dissertation has been approved as it satisfies the 8th

semester academic requirements in respect of project work.

Signature
Ms. Vidhu Rojit

Adjunct Professor

Signature
Dr. Shylaja S S

Chairperson

Signature
Dr. B K Keshavan

Dean of Faculty

External Viva

Name of the Examiners

1. __________________________

2. __________________________

Signature with Date

Dept. Of CSE Jan-May, 2020 2

Image Recognition based HTML Generator

DECLARATION

We hereby declare that the project entitled “Image Recognition Based HTML

Generator” has been carried out by us under the guidance of Ms. Vidhu Rojit and

submitted in partial fulfillment of the course requirements for the award of degree of

Bachelor of Technology in Computer Science and Engineering of PES University,

Bengaluru during the academic semester January – May 2020. The matter embodied

in this report has not been submitted to any other university or institution for the award

of any degree.

01FB16ECS172 Kunal Paliwal

01FB16ECS199 Mayank S Rao

01FB16ECS276 Prerna Rao V

Dept. Of CSE Jan-May, 2020 3

Image Recognition based HTML Generator

ACKNOWLEDGEMENT

We would like to extend our gratitude to all those who have aided and guided us over the course of

this project.

Firstly, we thank our guide Ms. Vidhu Rojit, Adjunct Professor, PES University who has been great

with feedback during the course of the project and mentoring sessions.

We would also like to sincerely thank our project coordinator Prof. Spurthi N. A. and Prof. Nithin H.

A., for carefully handling reviews and informing us of the important details throughout this project.

We would like to thank Ms. Preet Kanwal and Ms. Sangeeta V I, Project Coordinators for the batch

of 2016-2020, Computer Science for putting in the efforts to keep us informed.

We take this opportunity to thank Dr. Shylaja S S, Chairperson, Department of Computer Science

and Engineering, PES University, for all that we have learnt and received from the department.

We would like to thank Dr. B.K. Keshavan, Dean of Faculty, PES University for his help.

We are deeply grateful to Dr. Suryaprasad J, Vice-Chancellor, PES University. We would also like to

thank Prof. Jawahar Doreswamy, Pro Chancellor, PES University and Dr. M. R. Doreswamy,

Chancellor, PES University, for providing to us various opportunities and great infrastructure every

step of the way.

Finally, this project could not have been completed without the continual support and

encouragement we have received from our parents.

Dept. Of CSE Jan-May, 2020 4

Image Recognition based HTML Generator

ABSTRACT

This project provides a service to generate HTML pages from pure drawings. The motive is to build

an easy and open source method to generate pages without spending time on positioning and basic

CSS. It aims to help designers show prototypes to clients in real-time for a faster approval; to help

teachers draw sample pages to be generated, and focus solely on functionality; and for any areas

where only a basic responsive frontend is required.

To do this, the basics of wireframing and their style of representing HTML elements on paper were

considered. Machine Learning and Image Processing techniques were used to parse, process and

predict the images. The core of this project centers around the Support Vector Machine. With this,

drawings are predicted at a fairly high accuracy and use coordinate geometry and HTML / CSS to

generate the pages required. These pages are fully downloadable and usable HTML pages.

Dept. Of CSE Jan-May, 2020 5

Image Recognition based HTML Generator

TABLE OF CONTENTS

1. INTRODUCTION 10
2. PROBLEM DEFINITION 11
3. LITERATURE SURVEY 12

3.1. Object Detection with Deep Learning 12
3.1.1. Introduction 12
3.1.2. Approaches 12

3.2. Scale-Invariant Convolutional Neural Network 12
3.2.1. Introduction 12
3.2.2. Model Architecture 13
3.2.3. Results and Conclusions 14

3.3. You Only Look Once: Real-Time Object Detection 14
3.3.1. Introduction 14
3.3.2. Limitations 15
3.3.3. Conclusion 15

3.4. sketch2code: From paper mockup to generated web page 15
3.4.1. Introduction 15
3.4.2. Related Work 16
3.4.3. Approaches 17
3.4.4. Evaluation and Conclusion 18

4. PROJECT REQUIREMENTS SPECIFICATION 19
4.1. Scope 19
4.2. Gantt Chart 19
4.3. Product Perspective 20

4.3.1. User Characteristics 20
4.3.2. Risks 20

4.4. Requirements List 21
4.4.1. Module / Scenario 1 21
4.4.2. Module / Scenario 2 21
4.4.3. Module / Scenario 3 21
4.4.4. Module / Scenario 4 21
4.4.5. Module / Scenario 5 21

5. SYSTEM REQUIREMENTS SPECIFICATION 22
5.1. Functional Requirements 22

5.1.1. UI Page 22
5.2. Non-Functional Requirements 22

5.2.1. Dependencies 22
5.2.2. Assumptions 22

5.3. External Interface Requirements 22
5.3.1. Hardware Requirements 22
5.3.2. Software Requirements 23
5.3.3. Communication Interfaces 25

5.4. User Interfaces 25

Dept. Of CSE Jan-May, 2020 6

Image Recognition based HTML Generator

5.5. Help 25
6. HIGH-LEVEL DESIGN 26

6.1. System Design/Architecture 26
6.2. Design Constraints, Assumptions, and Dependencies 27

6.2.1. Assumptions 27
6.2.2. Limitations 27
6.2.3. Obstacles/Risks 27
6.2.4. Dependencies 27

6.3. Design Description 28
6.3.1. Master Class Diagram 29
6.3.2. Master Use Case Diagram 30
6.3.3. Description: 31

6.4. Sequence Diagram 32
6.5. Modules 33

6.5.1. Object Detection with OpenCV 33
6.5.2. SVM with Sklearn 33
6.5.3. HTML Factory 33
6.5.4. Server 34

6.6. User Interface 34
6.7. Help 34
6.8. Alternate Design Approach 35
6.9. Reusability Considerations 36

7. LOW LEVEL DESIGN 37
7.1. Design Description 37

7.1.1. Object Detection 37
7.1.2. Server 38
7.1.3. SVM 39
7.1.4. HTMLFactory 40

8. IMPLEMENTATION AND PSEUDOCODE 45
8.1. Data Creation 45
8.2. Flask Server 45
8.3. Object Detection Algorithm 47
8.4. Training the Support Vector Classifier 50
8.5. Support Vector Classifier 58
8.6. Html Factory 58
8.7. Resets 69
8.8. Testing 73

9. TESTING 76
9.1. Scope 76
9.2. Strategies, Roles, and Responsibilities 76
9.3. Test Tools Used 76

10. RESULTS AND DISCUSSION 77
10.1. Exploratory Analysis 77
10.2. Problems that led to preprocessing ideas 77

Dept. Of CSE Jan-May, 2020 7

Image Recognition based HTML Generator

10.3. Why SVM 78
10.4. The model 80
10.5. Usefulness 80
10.6. Why This Solution is Better 81
10.7. Project Learnings 81

11. SNAPSHOTS 84
12. CONCLUSION 86
13. FURTHER ENHANCEMENT 87

BIBLIOGRAPHY/REFERENCES 88
APPENDIX A DEFINITIONS, ACRONYMS AND ABBREVIATIONS 89

Dept. Of CSE Jan-May, 2020 8

Image Recognition based HTML Generator

LIST OF TABLES
Table. No. Table Title Page No.

3.1 Literature survey training table 15

6.1 Use case table 32-33

 7.1 Low level design data members 38

 7.2 Server data members 39

 7.3 SVM data members 39-40

 7.4 HTML Factory data members 41

 7.5 HTML Element template factory data members 41-42

 7.6 Resets data members 43

LIST OF FIGURES
Figure. No. Figure Title Page No.

3.1 Model architecture 15

6.1 System design 28

6.2 Pictorial demonstration of solution 30

6.3 Master class diagram 31

6.4 Master use case diagram 32

6.5 Sequence diagram 34

6.6 UI snapshot 36

8.1 Flask implementation snapshot 44-46

8.2 Object detection implementation snapshot 46-48

8.3 SVM training implementation snapshot 48-54

8.4 Support Vector Classifier implementation snapshot 54-55

8.5 HTML Factory implementation snapshot 55-64

8.6 Resets.py implementation snapshot 65-68

8.7 Testing implementation snapshot 68-70

11.1 SVM training accuracies 82

11.2 Home page of the UI 82

11.3 Sample input and corresponding output(1) 83

11.4 Sample input and corresponding output(2) 83

11.5 Automated Selenium script 84

Dept. Of CSE Jan-May, 2020 9

Image Recognition based HTML Generator

1. INTRODUCTION

The creative design process for a website begins with collaboration where designers share

ideas. These ideas describe the basic structure of a web page. The basic structure of a

webpage is most often a mockup, a sketch, or a wireframe.

The same stands for academia as well, for someone teaching or learning how to use front-end

technologies, they usually use skeletal web-pages or sketches.

The aim of this project/product is to speed up this process through the use of Image

Recognition, to build an application that understands and recognizes specific elements or

objects, then translates that understanding to HTML code.

The coding process begins with wireframes/images drawn on paper, which would be instantly

converted to HTML5 code and would help designers give instant feedback, or save time in the

academic area.

Multiple different designs could also be instantly tested and shown to customers, allowing for

faster development.

Dept. Of CSE Jan-May, 2020 10

Image Recognition based HTML Generator

2. PROBLEM DEFINITION

This project is a web-based application aimed to help the end-users quickly convert their wireframe

sketches into working downloadable HTML5 code ready for use. The inspiration from this project is

drawn from Microsoft’s sketch2code beta service which offers the same functionality to convert

wireframes to HTML5 code.

The project follows the following approach:

● Upload the hand-drawn/wireframe sketch to the UI.

● The image is pre-processed i.e. all the shapes are cropped, gaussian pass filters and canny

edge filters are applied to remove noise from the input image.

● The cropped objects are then passed to the SVM model which classifies it as a specific HTML

element.

● Using this information, HTML code is written to a file using an HTML factory built with

Python classes and inheritance, and the elements are positioned as drawn in the image with a

small padding margin.

● The output page is displayed on the UI and basic CSS can be added to the page, ready for

immediate download and use.

The scope of the project is limited to 4 common HTML elements namely, input, image, button and

checkbox. The application will provide functionality to:

● Upload hand-drawn images on paper or on a system to the application

● Convert these images to HTML web pages

● Preview the generated HTML page

● Modify basic styling of the elements of the page

● Download the source code to the previewed page

Dept. Of CSE Jan-May, 2020 11

Image Recognition based HTML Generator

3. LITERATURE SURVEY

3.1. Object Detection with Deep Learning

3.1.1. Introduction

This paper explores methods to accurately locate objects contained in each

image (object detection), which consists of many sub tasks like face,

pedestrian and skeleton detection. It explores the different methods that can be

applied to achieve object detection for the required use case and the most

optimal approach to help solve the problem. It explains the factors that affect

the learning systems and how they affect the object detection.

3.1.2. Approaches:

● Region proposal based framework

● Experimental evaluation

● Classification based framework

3.2. Scale-Invariant Convolutional Neural Network

3.2.1. Introduction

The idea initially was to be able to pass any image and redeem a useful output or

detected object from it. This would eliminate the need for pre-processing and

would speed up the process and enable faster testing and prototyping with

heavier focus being on the Machine learning aspect of the project. For this a

SiCNN or the Scale-Invariant Convolutional Neural Network was considered.

While traditional methods involve using augmentation and scale jittering, the

SiCNN has the ability to detect and extract multi-scale features and classify

Dept. Of CSE Jan-May, 2020 12

Image Recognition based HTML Generator

them. The SiCNN basically divides an image into a multiple column architecture

where each column represents or looks at a different scale and considers the

same parameters during scale transformation.

This model would ideally fix any issues we had without having to deal with an

exorbitant amount of data along with creating various scales and sizes of images.

The SiCNN also helps in reducing model size and provides output with excellent

accuracy and is extremely robust at multiple scales of variation

3.2.2. Model Architecture

Image 3.1: SiCNN Model Architecture

3.2.3. Results and Conclusions

Of course, as is to be expected, quality comes at a cost and the same is true here.

The paper points out that scale invariance increases cost linearly with respect to

Dept. Of CSE Jan-May, 2020 13

Image Recognition based HTML Generator

the number of columns and hence the requirement of incremental learning

methods was necessary.

Table 3.1. Error rate and cost

The SiCNN not only takes into account the varying scale of the images it wishes

to classify or learn from but also incorporates flipping of images into the model.

This means that images are flipped along both the X-axis and Y-axis and hence

provide a more robust performance over general simple CNNs. These

optimization techniques are both well received within the community and are

complemented well with other optimization techniques. From the results of the

paper it is possible to glean that the model has in fact learnt features of different

scales from different models. The SiCNN can act in any area that a traditional

CNN can and hence it provides not only more leeway with regards to scale and

size of images, but also provides a more robust and error free network.

3.3. You Only Look Once (YOLO CNN)

3.3.1. Introduction

Considering speed is of the essence, both in training and prediction, using a more

advanced version of a CNN or R-CNN called the YOLO CNN was considered.

This CNN is used even in OpenCV due to being much faster than even a Fast

R-CNN.

This paper proposes an object detection approach where it is framed as an

algorithm to spatially separate associated class probabilities and bounding boxes.

Dept. Of CSE Jan-May, 2020 14

Image Recognition based HTML Generator

The YOLO model runs through images in real-time at 45-46 frames per second.

Even though YOLO makes more localisation errors in comparison to other

detectors, it is much less likely to detect the image wrong. It learns general ideas

of objects and hence performs better than other methods.

3.3.2. Limitations

As YOLO puts in place tight spatial constraints on predicting bounding boxes, it

puts a cap on the number of close by objects that the model is able to predict. It

also suffers to accustom to objects in new configurations or aspect ratio. Errors

in small and large boxes are treated the same, this causes scaling to suffer

greatly.

3.3.3. Conclusion

YOLO can be constructed and trained directly on complete images. Unlike

approaches based on classification, this model performs at a much higher rate

thanks to its training loss function. It also generalises and performs very well on

new domains. This makes it the choice for applications that require fast object

detection.

3.4. sketch2code: paper mockup to generated website

3.4.1. Introduction

In this paper[3], author Alexander Robinson presents two approaches that

automate the process of converting wireframes to basic front end code. One

approach uses computer vision techniques, and the other uses the application

of deep semantic segmentation networks. The paper also introduces a new

approach that evaluates by automatically synthesizing sketches. This paper

Dept. Of CSE Jan-May, 2020 15

Image Recognition based HTML Generator

finds that deep learning approaches are more efficient than computer vision

techniques, and are more promising directions for future research.

3.4.2. Related Work

This paper highlighted two gaps that were found in this domain. One, that there

were very few Deep Learning methods in this domain of research. Two, that

there was no sketch to code solution designed yet.

It looks into two main categories - low fidelity images and high fidelity images.

On looking into existing applications in the domain, it found that -

● Low fidelity image applications (SILK/MOBIDEV) successfully used

Computer Vision to detect contours, corners, lines, and edges to

classify elements drawn digitally into predefined components. But the

time considerations to extend to new elements and the post-processing

of detected components were extremely difficult. Positioning, too, was

found to be hard to manipulate.

● High fidelity image applications (REMAUI/pix2code) used Deep

Learning methods as well as CV techniques to translate wireframes or

screenshots into code. REMAUI proved very difficult to add new

elements to, and pix2code only worked with its RNN based synthesized

data set; it did not generalize to real-world examples.

Post this research, it was found that there was no research or attempt to

transform wireframes on paper directly to code

This paper attempts to apply Deep Learning techniques on low fidelity images.

The following techniques were looked into:

3.4.2.1. COMPUTER VISION TECHNIQUES

● Image Denoising: They chose a median blur rather than a Gaussian blur or a

denoising autoencoder, so that the technique was fast as well as edge-preserving.

Dept. Of CSE Jan-May, 2020 16

Image Recognition based HTML Generator

● Colour Detection: By setting threshold values and recoloring the image to RGB.

● Edge Detection: They chose the Canny edge detection algorithm rather than the

Sobel or Richer Convolution features

● Segmentation: They chose to go forward with structural based segmentation, rather

than heavy contour detection or detection and approximation techniques.

● Text Detection: They used an SWT approach for text detection. This only detects

(does not recognize) handwritten text.

3.4.2.2. MACHINE LEARNING TECHNIQUES

● Multilayer Perceptrons: They are a class of feed-forward ANNs that are used to

distinguish data that is not linearly separable. However, there are multiple Machine

Learning implementations and approaches that work similarly to MLPs.

The paper mentions that Support Vector Machines can aid in such

multi-classification problems, by using binary classification SVMs in parallel.

● Semantic Segmentation: This paper chose to work with Deeplabv3+ because of its

top performance. It performed this well due to its use of dilated convolutions and

ASPP, for robust segmentation at multiple scales.

3.4.3. Approaches

The two goals of this paper were to create an application to translate

wireframes to code and to compare different to achieve the best performance.

The two approaches are described later, below.

To create the dataset, the chosen method in this paper was to collect existing

websites/webpages and auto sketch wireframes of them. This technique was

most convenient to build a large dataset and to avoid mistakes due to human

errors/opinions.

Since wireframes have a small element set and are style invariant as

compared to HTML, all the elements were normalized into broader element

Dept. Of CSE Jan-May, 2020 17

Image Recognition based HTML Generator

classes, and styling removed, and the images were cropped and converted to

black and white.

These images were then used as input for the two approaches:

● Classical Computer Vision

● Deep Learning Segmentation

3.4.4. Evaluation and Conclusion

The approaches were evaluated on the following criteria:

● Classification of elements and containers

Deep learning performed better in element classification and detection, while

Computer Vision worked better on containers.

● Similarity between provided input and generated output

The Deep Learning techniques showed a more consistent performance than the

Computer Vision approaches

● Generalisation to unseen examples or inputs

Computer Vision mildly outperformed Deep Learning methods.

The results indicated that deep learning solutions could provide a higher

performance and can be used to build consumer applications.

Dept. Of CSE Jan-May, 2020 18

Image Recognition based HTML Generator

4. PROJECT REQUIREMENTS SPECIFICATION

4.1. Scope
● This project/product is a web application intended to generate HTML pages

with rendered elements and downloadable source code for further additions.

● UI will be provided to upload a picture of the hand-drawn image to be

converted to an HTML page.

● On upload, there will be an option to convert the image to source code.

● The HTML page will then be generated and will be available to view on the

screen.

● A button to download the source code will be provided as well.

● The product will be able to generate basic elements such as - images, input text

fields, checkboxes, buttons.

● It will not provide the functionality to generate CSS.

● Scaling may not be as accurate as required by the user due to hand-drawn

images.

4.2. Gantt Chart

Dept. Of CSE Jan-May, 2020 19

Image Recognition based HTML Generator

4.3. Product Perspective

4.3.1. User Characteristics

● Developers: Front-end developers waste time when typing out basic code,

when a quick prototype can be generated and modified from there instead. It

allows backend developers to focus on backend code with a simple frontend.

● Designers: UI designers can use the application to be able to easily prototype

Web Pages to show the clients samples of how a real page would look like. If

the client doesn’t like the page structure after coding is done, it wastes the

designer’s time. This would simplify the process.

● Academics: Students and teachers can use the application so that websites

can be created instantly or copied from the board without having to do tedious

HTML coding every time. Not all students are good designers or know

HTML, CSS. This will enable them to create a basic page for enough

functionality without wasting time. It also allows teachers to quickly modify

pages and frontend to focus more on backend code.

4.3.2. Risks

● Severe lack of data, i.e, all data has to be manually created by hand.

● Positioning will be tricky to maintain as drawings don’t give an accurate

representation of position.

● Lack of papers or source material to read up on for a clearer understanding.

The majority of the project is dependent on personal innovation.

Dept. Of CSE Jan-May, 2020 20

Image Recognition based HTML Generator

4.4. Requirements List

4.4.1. Module / Scenario 1

Reqmt # Requirement

CRS – 1 UI should be easy to manage and intuitively usable

4.4.2. Module / Scenario 2

Reqmt # Requirement

CRS – 2
Users should be allowed to upload a hand-drawn image from a

local machine using the provided UI.

4.4.3. Module / Scenario 3

Reqmt # Requirement

CRS – 3
The preview of the generated page should be displayed on the UI

so that the user can verify/change the image if necessary.

4.4.4. Module / Scenario 4

Reqmt # Requirement

CRS – 4
Objects and diagrams should be detected accurately around 80% of

the time.

4.4.5. Module / Scenario 5

Reqmt # Requirement

CRS – 5
The returned file should follow clear HTML syntax with necessary

formatting.

Dept. Of CSE Jan-May, 2020 21

Image Recognition based HTML Generator

5. SYSTEM REQUIREMENTS SPECIFICATION

5.1. Functional Requirements

5.1.1. UI Page

The application shall allow a user to upload and download an image. It should also be

able to perform all the actions required by the user.

5.2. Non-Functional Requirements

5.2.1. Dependencies

● The application requires a system with Python 3.6

● Some packages as mentioned below would be required to run the models.

5.2.2. Assumptions

● All aspects of this application will meet the user’s requirements

● The input provided by the user matches the minimum requirements of the

application.

5.3. External Interface Requirements

5.3.1. Hardware Requirements

● Apart from a 32/64-bit architecture machine, there are no specific hardware

requirements as such to run the product. At most, a decent computer would be

required to launch a server and run the model, however, this isn’t compulsory.

● Only PCs will be supported. Due to Android and iOS file systems being

slightly problematic to work with, along with the fact that this project is

written in Python -- which is not supported natively by either Android or iOS.

Dept. Of CSE Jan-May, 2020 22

Image Recognition based HTML Generator

Any supporting framework to allow Python to run would most likely hamper

the quality of the tool.

5.3.2. Software Requirements

■ Filesystems for file operations

● NTFS, FAT32, exFAT, ext3, APFS

● Windows 7 onwards, Ubuntu 16.04 onwards, Yosemite onwards for OSX

■ Visual Studio Code

VSCode is an IDE by Microsoft to help build GUI, console, web and mobile

applications, cloud services, etc.

■ Google Colab

It is a free cloud service which also allows a free GPU.

■ Python 3.6

● Flask and its dependencies run on Python

● 3.6 only, as it is the current most stable release

● Python2 is no longer supported by the Python foundation and is not

supported

■ Packages/Libraries used:

● Scikit-learn

It is a machine learning library that features algorithms like SVM,

k-neighbours, etc.

● Keras (2.0.0 +)

Supplement module that runs on Tensorflow and abstracts and

agglomerates functions from the Tensorflow library for ease of access

● TensorFlow(2.0)

Dept. Of CSE Jan-May, 2020 23

Image Recognition based HTML Generator

It can be used to create large-scale neural networks with many layers and

is used for classification, prediction, etc.

● NumPy

It is a Python library that supports large multidimensional arrays, in

addition to functions to operate on these values.

It is used in this project to store and work with images.

● Matplotlib

It is a library for Python, NumPy used for embedding plots into

applications.

● PIL

PIL or Pillow (formerly), is a Python Imaging Library that provides

support for saving different image formats

● OpenCV

It is a computer vision library used to do image related operations

● Pickle

It is a module used to serialize and deserialize object structures in Python

● OS

It is a Python module that enables functionality dependent on the

operating system.

● Random

It is a library that is used to pick a random number from the provided

range of values.

■ HTML5/CSS3/ES6

● Compatible with Firefox and Chrome

● Edge browsers may have an issue running the applications

● Internet Explorer and Mini browsers such as Opera are not supported

Dept. Of CSE Jan-May, 2020 24

Image Recognition based HTML Generator

5.3.3. Communication Interfaces

● Communication is possible over Localhost if deployed as a downloadable tool

● If there is scope for the application to be deployed on Cloud, it will be

deployed over EC2 instances with Docker containers running multiple

instances of the server code.

● This would be accessible over the web with some associated IP addresses.

● If run as a tool, the server will run on the system as a daemon process on

some associated port

● If on the server, the client has to request a webpage and can follow through

from there.

● Over the web, there would be a slight delay, whereas on the localhost it would

be instantaneous.

5.4. User Interfaces
● Front end software: HTML, CSS, Javascript, Bootstrap

● Back end software: Python

● Framework: Flask

5.5. Help

Git-hub repository to provide specific installation guides and developer support.

Dept. Of CSE Jan-May, 2020 25

Image Recognition based HTML Generator

6. HIGH-LEVEL DESIGN

6.1. System Design/Architecture

Image 6.1: System Architecture for this application

Dept. Of CSE Jan-May, 2020 26

Image Recognition based HTML Generator

The UI design has the following features:

● Input image upload

● Input/Output preview

● Facility for conversion of input and generation of HTML output

● Facility to modify basic styling of rendered elements

● Facility to download output

6.2. Design Constraints, Assumptions, and Dependencies

6.2.1. Assumptions

● Lines are drawn fairly straight

● Picture is taken in a well lit environment

● The image is not already close-cropped and has some padding around it

● Elements drawn have an area of at least 1cm sq

● Horizontal images provide better performance

6.2.2. Limitations

● Elements have to have a minimum margin and size to be detected properly and

for ideal cropping

● Images must be uploaded in .jpg format

6.2.3. Obstacles/Risks

● Severe lack of data, i.e, all data has to be manually created by hand.

● Positioning will be tricky to maintain as drawings don’t give an accurate

representation of position.

● Lack of accuracy during the prediction of element

● Custom tags will require large amounts of data as well

● Lack of papers or source material to read up on for a clearer understanding.

● The majority of the project is dependent on personal innovation.

6.2.4. Dependencies

● Python = 3.6

Dept. Of CSE Jan-May, 2020 27

Image Recognition based HTML Generator

6.3. Design Description

Image 6.2: (a) Hand-drawn image (b) Object Detection (c) Classify into tags (d) Generated HTML Page

● HTML tags are encoded using special symbols (Eg.: A box with an X, to

indicate an image)

● Input is provided in the form of a drawing of a webpage with these encoded

symbols/tags.

● Each individual element in the image is then identified and cropped out using

the object detection module.

● Each detected object is passed through the SVM to identify and then classify it

into an HTML tag type.

● Each classified element/tag is converted to HTML code, and an HTML page is

generated.

● All elements are positioned and aligned as accurately as possible to match the

input image.

● After applying styling, the final output page is generated.

Dept. Of CSE Jan-May, 2020 28

Image Recognition based HTML Generator

6.3.1. Master Class Diagram

Image 6.3: Master Class Diagram

Dept. Of CSE Jan-May, 2020 29

Image Recognition based HTML Generator

6.3.2. Master Use Case Diagram

Image 6.4: Master Use Case Diagram

Dept. Of CSE Jan-May, 2020 30

Image Recognition based HTML Generator

Description:

Use Case Item Description

Draw Image Done to provide a hand-drawn image as input to the

application

Accept Input To accept input into the application and send it to

the server

Detect objects To detect individual elements on the page

Classify objects To identify and classify each detected element into

one of the predefined classes

Assign tags to each

object

To assign the corresponding HTML tag to each

classified element

Generate/Render HTML To render all the detected elements in HTML

Position on output page To align and position all items on HTML page as

accurately as possible

Add styling to generated

page

To add CSS to the HTML page and display the

updated styles

Display/download output To preview the output page and download final

code

Table 6.1: Use Case Description

Dept. Of CSE Jan-May, 2020 31

Image Recognition based HTML Generator

6.4. Sequence Diagram

Image 6.5: Master Sequence Diagram

Dept. Of CSE Jan-May, 2020 32

Image Recognition based HTML Generator

6.5. Modules

6.5.1. Object Detection with OpenCV

The input to this module is the hand-drawn input image. This module has been

designed to go through the entire input image, and then separate it into its

constituent elements (or pieces). Each element detected in the image is cropped

and made suitable for the next module, i.e, the SVM or Support Vector

Classifier. The output of this module is SVC compatible detected objects.

The pieces are decided by the Canny edge detection and contour detection

facilities provided by OpenCV.

6.5.2. SVM with Sklearn

The de facto module for building and running SVMs is the Sklearn module.

Combined with Skimage submodules, the entire module allows us to build the

SVM. the SVM is basically a class built out of Sklearn provided methods.

The input to this module is the detected objects/ elements from the object

detection module. This module has been designed to classify each element on the

input image into one of the predefined HTML tags. It classifies each element and

then labels them. This is stored as metadata and sent to the next module, i.e, the

HTML Factory module.

6.5.3. HTML Factory

The input to this module is the metadata created by the SVC module. This

module has been designed to create the final HTML page. It renders, positions,

and styles all the detected and classified elements. The output of this module is

the final HTML page which can be accessed by the user.

Dept. Of CSE Jan-May, 2020 33

Image Recognition based HTML Generator

6.5.4. Server

This module is the entry point of the application. It provides functionality for the

user to upload an image, and then sends the generated HTML page - with a

preview and facility to modify the style, and download the source code.

6.6. User Interface

The UI is easy to manage and to understand. All functions of the application are

visible on the single screen below.

Image 6.6: Main User Interface

6.7. Help

Git-hub repository to provide specific installation guides and developer support.

Dept. Of CSE Jan-May, 2020 34

Image Recognition based HTML Generator

6.8. Alternate Design Approach

This section shall describe the design approaches that were considered. The limitations

and advantages of each approach shall be explained briefly.

● The initial approach was to use a Neural Network to classify the detected

elements. Though this would have provided a higher accuracy than an SVC, it

was skipped because of the lack of data. The NN was not learning enough with

the limited data that had been created, and creating/building data was proving

to be extremely tedious with minimum success in training the NN. With lesser

data, SVMs were guaranteed to provide a better answer at the cost of accuracy.

Scaling an SVC would also be easier than scaling a NN. Since the images were

going to be very basic and classes limited, an SVC would be extremely fast

and easy to train.

● Coming to a decision on what symbols would be used to represent each

different element was a slightly long process. It proved to be slightly tricky as

it had to be ensured that the symbols made sense logically/intuitively and that

no symbol was too similar to the others in a way that would confuse the

classifier.

This led to multiple ideas, and a lot of trial and error until finally deciding on a

set of symbols for the elements.

● Some alternate approaches that were considered for providing CSS to the

generated page. One approach was to accept colored images as input, but it

was chosen not to go forward with this approach as it would be extremely

difficult to maintain styling through the preprocessing, and would greatly

increase the number of training parameters for classification. Another approach

was to provide a fixed basic styling to every generated web page, but it was

chosen not to continue this as it reduced functionality and client-side

flexibility.

Dept. Of CSE Jan-May, 2020 35

Image Recognition based HTML Generator

6.9. Reusability Considerations

This application can be installed on different systems and is reusable.

As future improvements, to access the application from anywhere, it can be hosted on

a central server.

All HTML elements are objects that inherit from a base class and aim to provide

maximum reusability and cohesion.

Dept. Of CSE Jan-May, 2020 36

Image Recognition based HTML Generator

7. LOW LEVEL DESIGN

7.1. Design Description

7.1.1. object detection

7.1.1.1. Description

● Data Members

Data Type Data Name Access Modifiers Initial Value Description

integer id_gen Public 0 Generated ID

array HTML_objects Public None

array img Public None Input image

array cnts Public None Detected contours

file dbfile Public None To store metadata

array coords Public None Coordinates of object

Table 7.1: Data Members 1

● Methods

1. Create_crops

○ Purpose: To apply preprocessing steps to the image and store

original coordinates

○ Input: uploaded image from user

○ Output: Processed and cropped objects and image

○ Parameters: uploaded image, objects in image, coordinates

2. split_images()

○ Purpose: To accept the image and split it into its constituent parts

○ Input: uploaded image from user

○ Output: Array of images of detected objects

○ Parameters: None

Dept. Of CSE Jan-May, 2020 37

Image Recognition based HTML Generator

7.1.2. Server

7.1.2.1. Description

7.1.2.2. Data members

Data Type Data Name Access Modifiers Initial Value Description

String json_str Public None Obtains JSON data

from client

Table 7.2: Data Members 2
7.1.2.3. Methods

● get_file

○ Purpose: Upload input image to convert

○ Input: Image convert to HTML code

○ Output: None

○ Parameters: None

● get_page

○ Purpose: Preview the HTML output file

○ Input: None

○ Output: HTML file opened in browser

○ Parameters: None

● download

○ Purpose: Get useable version of file

○ Input: None

○ Output: HTML file

○ Parameters: None

● delete_page

○ Purpose: Clear the generated preview

○ Input: None

○ Output: UI refresh

Dept. Of CSE Jan-May, 2020 38

Image Recognition based HTML Generator

○ Parameters: None

● modify_css

○ Purpose: Add basic css

○ Input: User input for changes to attributes

○ Output: Updated page with CSS modifications

○ Parameters: None

● root

○ Purpose: Render home page

○ Input: None

○ Output: Homepage of the web app

○ Parameters: None

7.1.3. SVM

7.1.3.1. Description

7.1.3.2. Data Members

Data

Type
Data Name

Access

Modifiers
Initial Value Description

String file_name Public None Name of the file to

be read

List HTMLobject_list Public None List of objects that

store all the objects

created by the

HTMLFactory

Class svm Public Trained model

HashM

ap

mapper Private {0:"Button"

,1:"Checkbox",2:"Image"

,3:"Input", 4:"Video"}

Maps SVM output

to object

Dept. Of CSE Jan-May, 2020 39

Image Recognition based HTML Generator

List<M

ap>

param_grid Private Too large to add, but

contains C value, gamma

value and kernel for SVM

Provides parameters

for GridSearch to

run

List X_train,X_test,Y

_train,Y_test

Private [] Training splits and

testing splits

Tuple dimension Private (64,64) Dimension required

for SVM training

Table 7.3: Data Members 3
7.1.3.3. Methods

● predict_images

● Purpose: Image classification

● Input: object

● Output: Classification labels

● Parameters: Object

● make_prediction

● Purpose: Reload model in case of corruption

● Input: Object

● Output: Image classification

● Parameters: None

7.1.4. HTMLFactory

7.1.4.1. HTMLFactory

● Description

● Data members

Data Type Data Name Access Modifiers Initial Value Description

integer prev_left Private None Old values for

left

Dept. Of CSE Jan-May, 2020 40

Image Recognition based HTML Generator

integer prev_top Private None Old values for

top

Table 7.4: Data Members 4
● Methods

○ attach_new_<attribute>

● Purpose: Add attribute setting to element

● Input: HTML element , attribute value

● Output: HTML element

● Parameters: object, integer

○ view_coordinates

● Purpose: View coordinates of HTML element

● Input: None

● Output: Co-ordinates

● Parameters: Object

○ set_<css_attribute>

● Purpose: Alter CSS attribute

● Input: HTML Element, value

● Output: CSS refresh

● Parameters: Object, value

○ render_HTML_template

● Purpose: render HTML

● Input: HTML & CSS file to render

● Output: HTML page

● Parameters: object

7.1.4.2. HTMLElementTemplateFactory

● Description

● Data members

Dept. Of CSE Jan-May, 2020 41

Image Recognition based HTML Generator

Data Type Data Name Access Modifiers Initial Value Description

string name Private None Name of the element

string id Private None ID of the element

tuple coords Private None Position of the element

Table 7.5: Data Members 5
● Methods: cast_to_<element>

● Purpose: place HTML elements on page

● Input: Element, type of element

● Output: New element

● Parameters: Object, id, className

7.1.4.3. HTMLDocument

● Description

● Data members

Data Type Data Name Access Modifiers Initial Value Description

string name Private None Name of the element

string id Private None ID of the element

tuple coords Private None Position of the element

Table 7.6: Data Members 6
● Methods: constructor

● Purpose: initialise object of the class

● Input: object attributes if any

● Output: Object

● Parameters: Attributes

7.1.4.4. HTML<Element>

● Description

Dept. Of CSE Jan-May, 2020 42

Image Recognition based HTML Generator

● Data members

Data Type Data Name Access Modifiers Initial Value Description

integer id Private None ID of the element

string HTMLid Private None HTML ID of the element

string classname Private None HTML class of the element

string name Private None Element name

Table 7.7: Data Members 7
● Methods

○ json_rep

● Purpose: Represent attributes in JSON format

● Input: HTML element

● Output: JSON object

● Parameters: Object

7.1.5. Resets.py

● Description

● Data members

Data Type Data Name Access Modifiers Initial Value Description

string <file>_paths Public None Relative paths to all files

in the server

Table 7.8: Data Members 8
● Methods

○ Reset_header

● Purpose: reset HTML headers

● Input: HTML header code

● Output: HTML file

● Parameters: None

Dept. Of CSE Jan-May, 2020 43

Image Recognition based HTML Generator

○ server_reset

● Purpose: reset flask server

● Input: Conent.html, index.css, element structure,

metadata

● Output: Server reset

● Parameters: None

○ rewrite_css

● Purpose: update CSS params from user

● Input: user input

● Output: index.css

● Parameters: data

○ download_file

● Purpose: download generated HTML file

● Input: None

● Output: HTML file

● Parameters: None

Dept. Of CSE Jan-May, 2020 44

Image Recognition based HTML Generator

8. IMPLEMENTATION AND PSEUDOCODE

8.1. Data Creation

All data had to be created manually by the team. Each of us drew approximately 300

to 400 samples for each element. Each sample was further rotated through right

angles, and flipped, to increase the size of the dataset by six times.

8.2. Flask Server

First, custom made modules for object detection and classification are imported

Default route to call index.html, i.e, the main page of the UI with basic styles

Dept. Of CSE Jan-May, 2020 45

Image Recognition based HTML Generator

To update the generated page with the new CSS

To clear/delete the uploaded image

To clear any existing data, and accept the uploaded input image

To return a preview of the generated HTML page

Dept. Of CSE Jan-May, 2020 46

Image Recognition based HTML Generator

To download the final version of the HTML file

8.3. Object Detection Algorithm

Detecting and cropping objects

Dept. Of CSE Jan-May, 2020 47

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 48

Image Recognition based HTML Generator

Preprocessing the input image

Splitting and saving cropped images

8.4. Training the Support Vector Classifier

Dept. Of CSE Jan-May, 2020 49

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 50

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 51

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 52

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 53

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 54

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 55

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 56

Image Recognition based HTML Generator

8.5. Support Vector Classifier

Dept. Of CSE Jan-May, 2020 57

Image Recognition based HTML Generator

8.6. Html Factory

Dept. Of CSE Jan-May, 2020 58

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 59

Image Recognition based HTML Generator

Returning the HTML Templates

Dept. Of CSE Jan-May, 2020 60

Image Recognition based HTML Generator

Child Classes of HTML Factory

Dept. Of CSE Jan-May, 2020 61

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 62

Image Recognition based HTML Generator

 {

Dept. Of CSE Jan-May, 2020 63

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 64

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 65

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 66

Image Recognition based HTML Generator

8.7. Resets

Dept. Of CSE Jan-May, 2020 67

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 68

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 69

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 70

Image Recognition based HTML Generator

8.8. Testing

Dept. Of CSE Jan-May, 2020 71

Image Recognition based HTML Generator

Dept. Of CSE Jan-May, 2020 72

Image Recognition based HTML Generator

9. TESTING

9.1. Scope
● All modules of the project will be tested manually

● UI testing will be automated.

9.2. Strategies, Roles, and Responsibilities

A proactive testing strategy was followed by all team members. In this

approach, the testing process is initiated alongside the development

process so as to detect and fix the defects before the build is created. In

doing so, bugs were detected at the earliest and fixed immediately.

9.3. Test Tools Used

The test tool used for this project is Selenium.

It is used for automated web application testing across different browsers.

It has 4 components: IDE, RC, WebDriver Grid.

The Selenium WebDriver has been chosen for testing the UI for this web

application.

This is an automation framework for the web that allows test execution

against different browsers. It also allows usage of a programming

language to create the testing scripts.

Dept. Of CSE Jan-May, 2020 73

Image Recognition based HTML Generator

10. RESULTS AND DISCUSSION

10.1. Exploratory Analysis

The origins of the idea are very organic as there are few applications like this one available

in the market. Outside of one or two papers, it was extremely difficult to find

documentation or methodology to follow. Hence, the procedure of working on and

building this product was based on intuition and innovation.

The main source of inspiration was Microsoft’s own Sketch2Code. As such, it was natural

to start browsing from there, however, the product is no longer displayed on the website.

Beyond that, the rest of the videos were small videos from Twitter and other social media.

Therefore, as many videos and samples as possible were found and explored before trying

to find a novel way of implementing it.

10.2. Problems that led to preprocessing ideas
● The main issue associated with pre-processing was detecting the objects themselves.

Since there was no dataset available and the expected route for data gathering was

through crowdsourcing, the following ideas were developed.

● The first was anticipated that people would draw however they wanted, wherever

they wanted. It was expected that photos of the drawings, as well as the sample data

required for training, would not be perfectly aligned, or straight. Therefore, it was

necessary to create a cropping algorithm that would cut out only the required image,

this would also be a proof of concept that if this did work, it would be extendable to

the rest of the project. Therefore, it was elected to get bounding boxes for all

elements including the border of the image

This completed the first stage of pre-processing.

Dept. Of CSE Jan-May, 2020 74

Image Recognition based HTML Generator

● The second stage involved the actual detection of the rectangular bounding boxes.

The performance was impacted by lines of different color, the brightness of the

surroundings and various degrees of saturation. To combat this, all images are

grayscaled on upload. While this fixed a lot of the problems, the gradients still

caused detection errors. A combination of the OTSU filter and binary conversion of

the image into only black and white enabled us to improve the quality of detection.

● This still left the problem of actually detecting the rectangles. It was fair to assume

that people could not draw straight lines perfectly, especially long lines and so the

contour values had to be tweaked further to incorporate bent lines, curves and

varying thicknesses. This still reached a limit where lines angled at anything nearing

30deg would not be considered. This problem would finally be addressed with the

addition of Canny Edge detection which would finally improve detection

tremendously.

● The last issue, while not pressing, was the degree of cropping required. Some

breathing room would have to be provided to prevent the image from being

close-cropped. For this, a padding of 40px was provided to images scaled to

200sqpx.

● Finally, to boost the quantity of data, all images were rotated and flipped along their

axes (where possible).

10.3. Why SVM

SVMs or Support Vector Machines’ sole goal is the separation of data into classes , the

process known as ‘classification’. However, this doesn’t explain why a CNN wouldn’t

perform equally well, especially since CNN is built to work exclusively with images.

The answer is very direct: data.

Dept. Of CSE Jan-May, 2020 75

Image Recognition based HTML Generator

A CNN requires over a thousand images, closer to ten thousand images to perform

efficiently, whereas an SVM can get by with a fraction of the data. A few assumptions and

contrasting features were noted, as a CNN was with the limited data possessed, only to

watch the CNN fail spectacularly.

The reasons for choosing the SVM over a CNN were:

1. While crowdsourcing was planned initially, this proved to be inconvenient, and

the decision to stick to the less data-intensive models was taken due to the unique

situation put in front of us.

2. The images were not complicated and could not be found in many orientations. A

CNN is extremely special in that it can detect objects like dogs and cats with

incredible accuracy even if they are contorted into various positions or angles,

however, the images were extremely basic and would not vary much; if at all.

Hence the SVM would not be required to “see” things in odd orientations and

would not lose out here.

3. CNN’s are difficult to train and extremely taxing even on high-end machines.

While sources like Colab exist, that would still mean looking at several hours a

day to train (provided the model worked properly and no errors occurred). The

SVM on the other hand would not slow us down as much, being much lighter and

faster to train as well as allowing us to quickly add revisions if necessary. With

lesser data required and more speed in training, the SVM was a better choice.

4. The normal counterpoint to the SVM is the lack of multiclass detection. However

this was circumvented through the use of the famous “kernel trick”, wherein the

data is projected onto a higher dimension to allow selection of better hyperplanes

for multiple classes. This would at the very least equally match the CNN in terms

of multiclass quality detection.

Dept. Of CSE Jan-May, 2020 76

Image Recognition based HTML Generator

10.4. The model

● Being an SVM, the structure is straightforward. The addition of the kernel trick was

simple due to past experience of using the SVM and a plentiful of resources present

to find a good implementation of the SVM.

● This project uses GridSearchCV which is an exhaustive search over all the parameter

values for a given estimator. This leads to an optimized result produced by the cross

validation grid search on a parameter grid.

● For linear searches, this project uses the linear kernel (Obviously, as that’s pretty

much the default kernel for 2D)

● Considering SVMs perform best with RBF, this application uses RBF only.

Polynomial kernels are usually better suited to NLP operations which were not

relevant.

● The dimensions used were standard 64x64 and while considering 256x256 for the

images, it was eventually settled on 200x200 as per recommendations from the

literature survey and other sources.

● GridSearchCV also allowed us to loosely pass an array of C values (1-1000) in

exponents of 10 and gamma values of 0.001 and 0.0001 respectively.

● Test size was chosen personally by us, despite the recommended amount being

around 15% as per the literature survey, this project considered up to 30% just for a

better and more thorough testing.

10.5. Usefulness

With such an application at hand it is extremely convenient to quickly build workable

front-ends and prototype web pages without prior knowledge of HTML/CSS. With a set of

Dept. Of CSE Jan-May, 2020 77

Image Recognition based HTML Generator

basic rules, and basic intuition it is simple to draw an image/wireframe on any suitable

platform, and have the result generated in a matter of minutes.

The SVM is the crux of the project. The whole project relies on the ability of the SVM to

accurately detect and predict the class of the image.

The SVM is accurate and requires very less time to retrain for new classes. This gives us

the confidence to work towards the rest of the project as well as include future

improvements to it.

Considering the data used in this project is custom, the algorithm cannot be replaced,

making it a unique application.

10.6. Why This Solution is Better
● There are not a lot of solutions, to begin with, there were limited sources to

compare to. However, from what was looked at, it was seen that :

● This solution could easily be extended with just a small folder of extra data

● CSS can be improved at the front-end if not satisfied

● Pages are responsive

● Software is free and open-source

● Pages can be downloaded once ready and used immediately.

10.7. Project Learnings

10.7.1. Techniques

● Inheritance and OOPs,

● Clustering ideas and algorithms,

● Processing of images and reasons

● Sharing data between different HTML windows

● Cache-control

● Element positioning, responsiveness, and 2D geometry

Dept. Of CSE Jan-May, 2020 78

Image Recognition based HTML Generator

● GridSearch

● Canny edge detection

● Binary conversion of images

● Skeletonization

● Contours detection

● Manipulating channels in images

● Various filters used in image processing

10.7.2. Software

● Selenium

● OpenCV

● Pillow

● Jinja / Flask

● jQuery animations

● CSS Keyframes

● Flexbox

● Py-lint

10.7.3. Issues Faced

● Detection of boundaries and tweaking parameters to find ideal values for the

boundaries

● Selection of parameters for SVM and testing the best possible values. Testing

out a CNN to realize the severe lack of data

● Having a lack of data and the crowdsourcing option removed due to

unforeseen circumstances.

● Shape for the SVM and figuring out how to manipulate or remove channels in

images.

● Creating data manually as well as finding ways to improve data quality and

quantity

Dept. Of CSE Jan-May, 2020 79

Image Recognition based HTML Generator

● Mathematics involved with positioning and calculating width of tags and

shapes

● Manipulation of JSON data multiple times in multiple ways at multiple

interfaces

● Handling iframes with Selenium where the click event occurs on the parent

page instead of the child.

● Adding click functionality into the iframe and gathering data.

● Making sure pages don’t cache and reuse old CSS, involved a lot of cache

control.

● Lack of useful papers to study from, while individual components could be

found, the task of integrating them together was beyond complex.

● Maintaining the speed of conversion of drawings to images

Dept. Of CSE Jan-May, 2020 80

Image Recognition based HTML Generator

11. SNAPSHOTS

Image 11.1: SVM Training Accuracies

Image 11.2: Main page of the UI

Dept. Of CSE Jan-May, 2020 81

Image Recognition based HTML Generator

Image 11.3: Sample input and corresponding output (1)

Image 11.4: Sample input and corresponding output (2)

Dept. Of CSE Jan-May, 2020 82

Image Recognition based HTML Generator

Image 11.5: Automated Selenium running

Dept. Of CSE Jan-May, 2020 83

Image Recognition based HTML Generator

12. CONCLUSION

To conclude, this project consists of :

1. Getting a well-drawn or computer drawn image of a web page using the object

structure provided.

2. Detecting all the objects from the sheet, applying OTSU filters and reducing the image

to only binary colors. From here, all coordinates have to be obtained and cropped out

for individual scanning.

3. The parts of the image are fed to the multiclass SVM which classifies the objects into

relevant HTML elements.

4. The HTML elements are placed proportional to their location in the drawing and some

basic CSS is added.

5. The HTML elements are further processed and have their alignment improved to have

the elements line up cleanly. The page is also now fully responsive

6. The user’s view is updated with the rendered page. From here the user can add final

touches and clean up the page.

7. The user can then download a compiled HTML page with the desired CSS.

Dept. Of CSE Jan-May, 2020 84

Image Recognition based HTML Generator

13. FURTHER ENHANCEMENT

Due to the vast scope of the project, the future improvements are nearly endless.

1. Optical character recognition (OCR) to allow users to enter text and have it show up in

the HTML page.

2. More HTML elements can be added as required.

3. JavaScript code snippets can be integrated to allow basic functionality.

4. Optional stylesheets for users to pick the styles they want. (Fonts / Colors etc.)

5. Nested element detection can be added to that elements can be grouped into

components.

6. Elements can be grouped into forms for submission.

7. Bigger datasets would allow more accurate detection.

8. More advanced ML models like Denoising Autoencoders would allow photos to be

taken even in shabby lighting. Alternatively, GANs could entirely figure out how to

clean all defects in an image and redraw the same image with sharper lines and

improve detection. Better networks like YOLO CNNs could also give better detection

results, however, this is contingent on the dataset.

9. Skeletonization of the images could make even extremely thick lines work normally

and normalize the dataset.

Dept. Of CSE Jan-May, 2020 85

Image Recognition based HTML Generator

BIBLIOGRAPHY/REFERENCES

[1] Adrian Rosebrock, “Computer Vision Blog”

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You Only Look Once:

Unified, Real-Time Object Detection”

[3] Zhong-Qiu Zhao (Member, IEEE), Peng Zheng, Shou-tao Xu, and Xindong Wu (Fellow,

IEEEY). “Object Detection with Deep Learning: A Review”. Ieee Transactions On Neural

Networks And Learning Systems.

[4] Alexander Robinson, University of Bristol. “sketch2code: Generating a website from a

paper mockup”

[5] Yichong Xu (Tsinghua University), Tianjun Xiao (Peking University), Jiaxing Zhang

(Microsoft Research Asia), Kuiyuan Yang (Microsoft Research Asia), and Zheng Zhang

(NYU Shanghai). “Scale-Invariant Convolutional Neural Network”.

Dept. Of CSE Jan-May, 2020 86

Image Recognition based HTML Generator

APPENDIX A DEFINITIONS, ACRONYMS AND ABBREVIATIONS

1. HTML = HyperText Markup Language

2. IDE = Integrated Development Interface

3. CSS = Cascading Style Sheets

4. GUI = Graphical User Interface

5. ML = Machine Learning

6. CV = Computer Vision

7. SVM = Support Vector Machine

8. SVC = Support Vector Classifier

9. RNN = Recurrent Neural Network

10. RGB = Red Green Blue

11. SWT = Stroke Width Transform

12. MLP = Multilayer Perceptron

13. ANN = Artificial Neural Network

14. ASPP = Atrous Spatial Pyramid Pooling

Dept. Of CSE Jan-May, 2020 87

